Formation of a Macrobicyclic Tris(disulfide) by Molecular Self-Assembly

Suk-Wah Tam-Chang,* Jeffrey S. Stehouwer, and Jinsong Hao

Department of Chemistry, University of Nevada, Reno, Nevada 89557

Received October 28. 1998

Self-assembly is a fundamentally important process employed by nature in the construction of supramolecular biological systems with a minimal expenditure of resources and energy. Extensive effort has been spent in designing components which mimic natural systems by undergoing molecular self-organization through coordination of metals¹ or selective noncovalent interactions such as hydrogen bonding.² In contrast, the area of self-assembly with covalent modification is relatively little explored.^{3,4} One of the more intriguing examples comes from nature: the thiol-disulfide interchange reaction which is important in stabilizing protein structure by disulfide bridge formation.^{4,5} This reaction has potential applications in the self-assembly of robust supramolecular arrays with proof-reading to remove errors by its remarkable ability to effect the reversible formation and cleavage of strong, covalent S-S bonds at room temperature.⁶ The ability to control the formation of disulfide bonds can be applied to the design of preorganized monomers which may self-assemble to generate organized entities with interesting architectures and properties. We report herein an enhancement of the thermodynamic stability of a tris(disulfide) dimer by molecular design and the first example of the formation of tris(disulfide) dimer 1 from its trithiol monomer 2 under equilibrium conditions (Scheme 1)

Previous attempts to form a macrocyclic dimeric bis-(disulfide) or tris(disulfide) under equilibrium conditions⁷ were met with difficulty due to the unfavorable enthalpy term originating in CSSC torsion angle strain. In addition, the thiol groups in the monomer are not preorganized in a geometry that resembles the disulfides in the dimer resulting in an unfavorable entropy change upon dimer formation.

Our approaches in molecular design were to preorganize the starting trithiol into a conformation resembling that of the tris(disulfide) and to eliminate as many rotational degrees of freedom as possible, while allowing the formation of a strain free CSSC dihedral angle of about 90°. We thus

H. F. Methods Enzymol. 1995, 252, 8.
(6) (a) Lees, W. J.; Whitesides, G. M. J. Org. Chem. 1993, 58, 642. (b) Rosenfield, R. E. Jr.; Parthasarathy, R.; Dunitz, J. D. J. Am. Chem. Soc. 1977, 99, 4860. (c) Pappas, J. A. J. Chem. Soc., Perkin Trans. 2 1979, 67. (7) (a) Singh, R.; Whitesides, G. M. J. Am. Chem. Soc. 1990, 112, 1190.

Figure 1. Study of the thiol-disulfide interchange equilibrium (1 mM ME^{ox}) at 298 K among trithiol 2, dimer 1, and oligomer 3 in DMSO-d₆ (under argon) by 500 MHz ¹H NMR spectroscopy after 17 davs.

designed and synthesized trithiol **2** as shown in Scheme 2. Nonbonded steric effects between adjacent groups on the aromatic ring⁸ are expected to force the ethyl groups and the thiol-terminated substituents to lie on opposite sides of the ring. In this conformation, the thiol groups are preorganized into a geometry that resembles the conformation of the monomeric units in dimer 1. Amide groups which have a lower rotational degree of freedom than alkyl chains are introduced $(7 \rightarrow 8)$ so as to constrain the CH₂SH groups to lie away from the aromatic ring, thereby enabling the formation of disulfide bonds without CSSC angle strain.

Under high dilution kinetic conditions, trithiol 2 is oxidized by iodine to tris(disulfide) dimer 1 (in 84% yield after purification). Oligomer **3**, which is insoluble in CHCl₃, was isolated as a byproduct in about 10% yield. Evidence for the formation of dimer 1 includes the following: (1) a dimer parent ion peak ($[M + H^+]$) at m/z 937.2973 in the HRMS-FAB mass spectrum, and (2) sharp peaks in the ¹H NMR spectrum in CDCl₃ but no thiol proton peak (a trimer would have shown thiol peaks). In contrast, oligomer 3 showed no peak below m/z 2000 in the HRMS-FAB mass spectrum and broad peaks in the ¹H NMR spectrum in DMSO- d_6 . Dimer **1** is stable in solution up to 50 °C. A 1 mM solution of **1** in DMSO- d_6 showed no change in ¹H NMR signals after heating at 50 °C for 6 days.

Under equilibrium conditions in the presence of 2-hydroxyethyl disulfide (ME^{ox}), trithiol **2** exists in equilibrium with dimer 1, oligomer 3, and unsymmetrical disulfide9 (Figure 1). Starting from a solution of 2 (1 mM) and ME^{ox} (1 mM) in DMSO- d_6 under argon in a sealed NMR tube, equilibrium was achieved in several weeks.¹⁰ Integration of the NH peaks in the ¹H NMR spectrum shows that 30% of the amide hydrogens are present as dimer 1. Calculations based on 1 mM ME^{ox} indicate that the theoretical amount

Stang, P. J.; Olenyuk, B. Acc. Chem. Res. **1997**, *30*, 502.
 (a) Tecilla, P.; Jubian, V.; Hamilton, A. D. Tetrahedron **1995**, *51*, 435. (b) Yang, J.; Fan, E.; Geib, S. J.; Hamilton, A. D. J. Am. Chem. Soc. 1993, (b) Fang, S., Fan, E., Gelb, S. S., Halmton, A. D. J. Ant. Chem. 30c. 1953, 115, 5314. (c) Lehn, J.-M. Pure Appl. Chem. 1994, 66, 1961. (d) Timmerman, P.; Vreekamp, R. H.; Hulst, R.; Verboom, W.; Reinhoudt, D. N.; Rissanen, K.; Udachin, K. A.; Ripmeester, J. Chem. Eur. J. 1997, 3, 1823. (e) Whitesides, G. M.; Simanek, E. E.; Mathias, J. P.; Seto, C. T.; Chin, D. N.; Mamen, M.; Gordon, D. M. Acc. Chem. Res. 1995, 28, 37. (f) Conn, M. M.; Rebek, J., Jr. Chem. Rev. 1997, 97, 1647. (g) Lawrence, D. S.; Jiang, T.; Levett, M. Chem. Rev. 1995, 95, 2229.

^{(3) (}a) Philp, D.; Stoddart, J. F. Angew. Chem., Int. Ed. Engl. 1996, 35, 1154. (b) Rowan, S. J.; Hamilton, D. G.; Brady, P. A.; Sanders, J. K. M. J. Am. Chem. Soc. 1997, 119, 2578.
(4) Lindsey, J. S. New J. Chem. 1991, 15, 153.

^{(5) (}a) Ziegler, D. M. Annu. Rev. Biochem. 1985, 54, 305. (b) Houk, J.; Singh, R.; Whitesides, G. M. Methods Enzymol. 1987, 143, 129. (c) Gilbert,

⁽b) Houk, J.; Whitesides, G. M. J. Am. Chem. Soc. 1987, 109, 6825. (c) Houk, I.; Whitesides, G. M. Tetrahedron Lett. 1989, 45, 91. (d) Burns, J. A.; Whitesides, G. M. J. Am. Chem. Soc. 1990, 112, 6296.

^{(8) (}a) Vogtle, F.; Weber, E. Angew. Chem., Int. Ed. Engl. 1974, 13, 814. (b) Stack, T. D. P.; Hou, Z.; Raymond, K. N. J. Am. Chem. Soc. 1993, 115, 6466. (c) Metzger, A.; Lynch, V. M.; Anslyn, E. V. Angew. Chem. Int. Ed. Engl. **1997**, *36*, 862. (d) Bisson, A. P.; Lynch, V. M.; Monahan, M.-K., C.; Anslyn, E. V. Angew. Chem., Int. Ed. Engl. **1997**, *36*, 2340.

⁽⁹⁾ The presence of unsymmetrical disulfide is due to the formation of disulfide bonds between mercaptoethanol and the free thiol ends of monomer 2 and oligomer 3.

⁽¹⁰⁾ Equilibrium can also be established by mixing mercaptoethanol with a solution of dimer 1 or oligomer 3.

Scheme 1

Scheme 2

of disulfide bond formation is 66%.¹¹ Similar studies using 1.5 mM (stoichiometric) and 3 mM (excess) of ME^{ox} result in 27% and 23%, respectively, of the amide hydrogens present as dimer 1.¹² We could not determine the exact concentration of the oligomer, and therefore its relative stability compared with the dimer because the amount of monomeric units existing as trithiol **2**, oligomer, or unsymmetrical disulfide could not be determined precisely due to overlapping peaks for their NH protons and overlapping peaks for their CH₂NH protons. In addition, the exact formula of the oligomer is not known. An attempt to determine product percentages with HPLC was unsuccessful

Scheme 3

because the compounds do not significantly absorb in the UV-vis spectral region.

Trithiol **10** (Scheme 3) was prepared and used as a control to test the effect of CSSC dihedral angle strain on dimer formation. CPK modeling of dimer **11** showed that it is highly strained. The inability to form strain-free CSSC dihedral angles presumably discourages the formation of **11**. Attempts to prepare **11** from trithiol **10** under conditions identical to those used to prepare tris(disulfide) **1** yielded only oligomeric product **12**.

In conclusion, we have demonstrated that by appropriate molecular design it is possible to enhance the stability of a dimeric tris(disulfide) which we have observed in equilibrium with the oligomer. The result is a macrobicyclic capsule having a cavity size large enough to accommodate small guest molecules. We are currently working toward increasing the stability of the self-assembled dimer through hydrogen bonds and/or electrostatic interactions as well as specific guest encapsulation within the cavity.

Acknowledgment. This research is supported by the University of Nevada, Reno. We are grateful to Professor George M. Whitesides (Harvard University) for his helpful advice.

Supporting Information Available: Spectroscopic data for compounds 1-3, and experimental procedures for equilibrium studies.

JO982166C

⁽¹¹⁾ The total theoretical amount of free thiol ends remaining in monomer **2** and oligomer **3** is 33%.

⁽¹²⁾ The decrease in dimer formation is presumably due to competing formation unsymmetrical disulfide. Attempts to minimize unsymmetrical disulfide formation by using cyclic disulfide (e.g. *trans*-1,2-dithiane-4,5-diol) instead of 2-hydroxyethyl disulfide (ME^{∞}) to induce equilibrium were unsuccessful due to the weak oxidative strength of the cyclic disulfide.